研究室紹介資料

情報工学コース・情報工学科

情報ネットワーク工学講座・情報通信システム研究室

鈴木秀智

画像処理関連の研究について

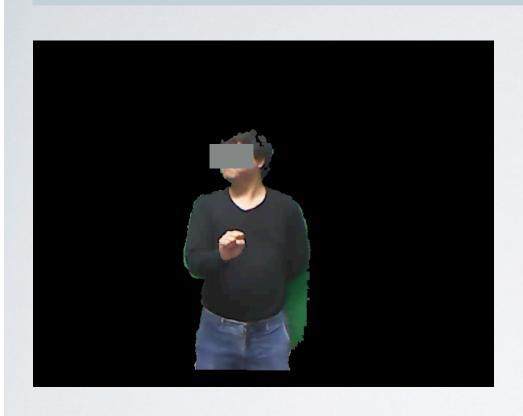
- コンピュータビジョン関連
 - ・手話, 指文字の認識
 - ・ジェスチャ認識、認証
 - 頑健な物体認識
 - ・自己位置推定および環境地図作成 (SLAM, SfM)
- 医療情報処理関連
 - Deep Learning による画像診断支援(組織標本画像における異常判定等)
- シミュレーション関連
 - ・粒子法による大規模火災シミュレーション
 - ・マルチエージェントシミュレーション (避難行動計画等)

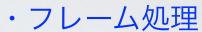
RoboCupで行っていた 自律移動ロボットの


- 行動計画
- ・協調動作が始まり

コンピュータビジョン関連の研究

- ・コンピュータビジョン
 - ・コンピュータによる視覚情報処理のこと
 - ・画像(写真,映像)から被写体(物体,対象物)の3次元構造を推定
 - 応用例
 - ・ 立体視(両眼・多眼による3次元形状把握)
 - ・自動運転における車や歩行者の検知
 - ・ 写真測量における 3 次元形状復元


手話,指文字の認識


- •指文字認識(単一文字, 単語)
 - 手話で文字を表現するために使用される動作
 - ・手形状と手の動きに基づく認識
 - 形状特徵: HOG, Key-point, 等
 - ・ 動き特徴: 手領域の移動方向・速度, 等
 - · 認識:HMM, DP, 等

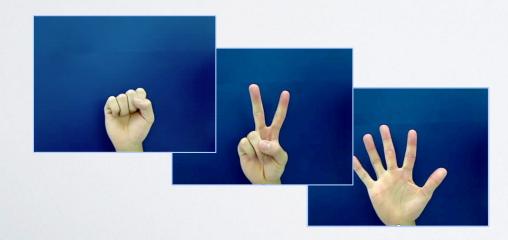
全部で82種類

手話,指文字の認識

- ・ノイズ除去
- ・手領域抽出
- ・HOG算出
- ・手領域の位置・移動方向
- ・特徴量の処理

HMM による分類

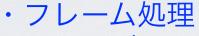
分類結果(単語における文字の認識)


- ・静止指文字 59.0%
- ・動きのある指文字 73.1%
- ·全体 60.6%

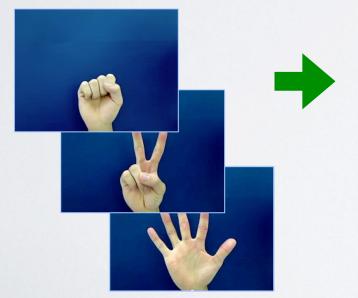
難しさ

- ・字種
- ・動きのある文字の存在
- ・手話動作との統合

ジェスチャ認識, 認証


- ジェスチャ認証
 - ・身体的特徴による生体認証
 - 指紋, 虹彩, 静脈, 顔, 等
 - ・高精度だが、盗用・身体的変化の問題あり
 - ・行動的特徴による生体認証
 - 声紋, 署名, 歩容, 手指動, 等
 - ・真似しにくく、盗用時の変更が可能

例: グー・チョキ・パーの 連動作により個人を認証


ジェスチャ認識, 認証

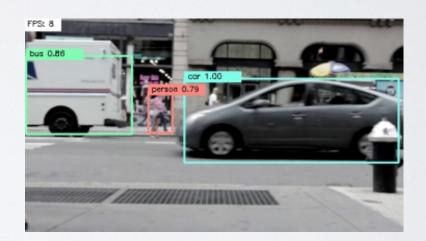
- ・ノイズ除去
- ・手領域抽出
 - ・特徴量抽出
 - ·HLAC,等
- ・動画全体の特徴量を算出

- ・識別器による分類・SVM 等
- ・グー・チョキ・パーの連動作により個人を認証

認識結果

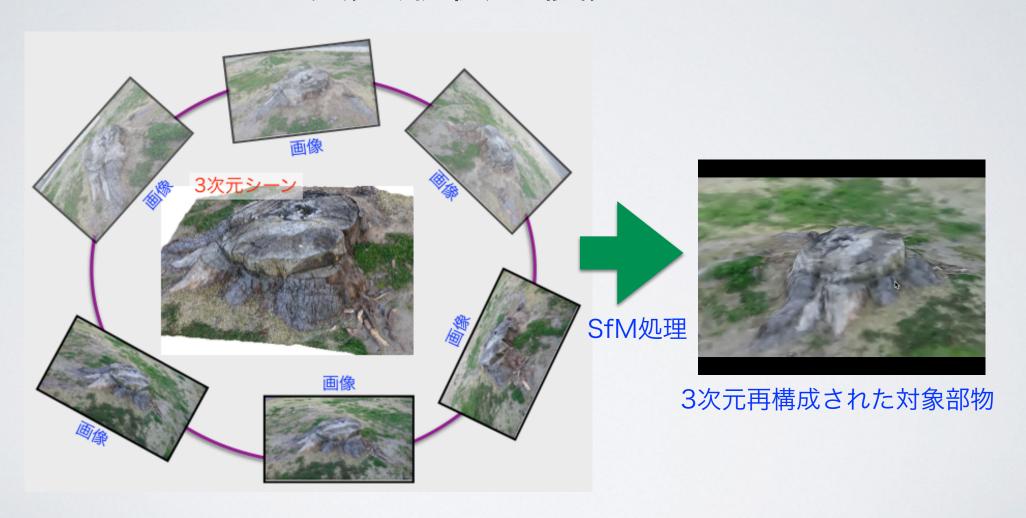
	本人受入率	他人拒否率
ジェスチャ1	75.29	98.97
ジェスチャ2	63.67	97.98
ジェスチャ3	61.17	96.81
平均	66.71	97.92

頑健な物体認識


BoFによる背表紙の抽出と認識

- ・一般物体認識技術の応用
- ・特徴量(BoF)の利用
- ・Deep Learning の利用

インスタンスレベルセグメンテーション


Deep Learningによる物体検出・認識

自己位置推定, 環境地図作成

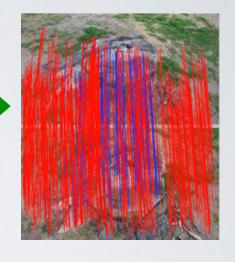
- SLAM, SfM技術を応用したもの
 - SLAM (Simultaneous Localization And Mapping), SfM (Structure from Motion)
- ・ロボットビジョンの自己位置認識・環境地図 作成の研究が始まり
- 研究内容
 - ・ SLAM, SfMの精度向上
 - ・ 画像間対応点検索法の改良
 - ・高密度クラウド生成法の改良
 - ・ 3次元モデルでの物体の分類
 - ・土木測量、景観評価、等への応用

自己位置推定, 環境地図作成

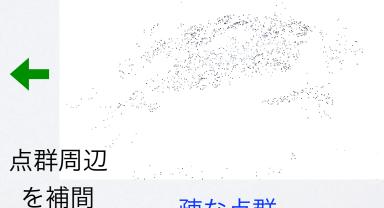
・SfMによる3次元形状の復元

対象物の複数枚の画像を撮影

自己位置推定, 環境地図作成


・SfMの処理の概要

入力画像


特徵点抽出

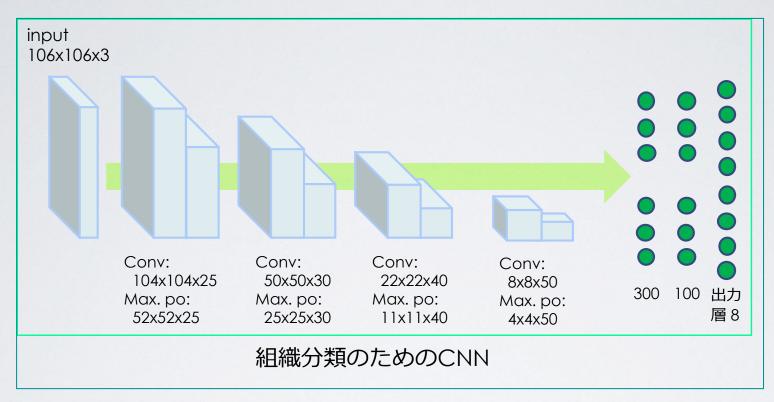
特徴点の対応付け

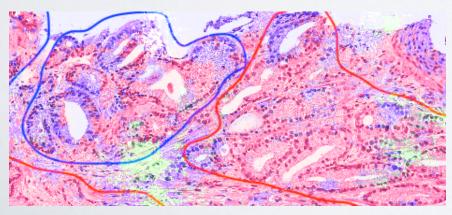
蜜な点群 (カラー化)

疎な点群

対応が取れた点の 3次元位置を推定

医療情報処理関連


- ・組織標本画像の病理診断支援
 - ・組織分類, 病変の分類
 - ・対象:各種癌の組織標本
 - ・染色組織標本画像を用いた病変(の悪性度)の分類
 - ・細胞の構造、配列などの認識が必要
 - ・テクスチャ分類, AI利用, 等



前立腺針生検画像

医療情報処理関連

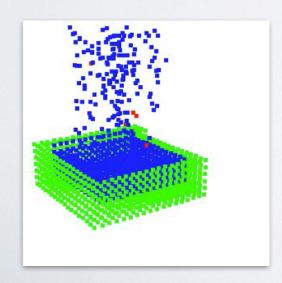
組織標本画像の組織分類

医師: 赤枠 G3, 青枠 G4

結果: 赤 G3, 青 G4, 緑 G5

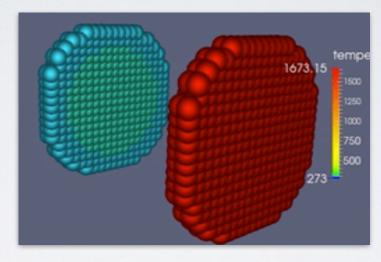
組織分類結果

シミュレーション関連


- ・粒子法による大規模火災シミュレーション
 - ・粒子法:空間・対象を粒子で表現して挙動を再現
 - ・変形などに対して有効
 - ・変形や移動に加え、熱の授受(伝熱、対流、輻射)を考慮
- マルチエージェントによる避難シミュレーション
 - ・ 大人数の避難行動の再現
 - ・集団における人間関係の考慮(親子,弱者対応等)

シミュレーション関連

• 粒子法



放水のシミュレーション

水の沸騰のシミュ レーション

大規模火災の早期消火を目指して

熱輻射のシミュレーション

- ・直方体容器内の水の沸騰を再現
 - ・底面全体に加熱
- · 粒子
 - ・緑:容器(底の方のみを表示)
 - ・青:水
 - ・赤:水蒸気
- ・以下の現象を考慮
 - ・水の対流
 - ・水が気化する際に蒸発潜熱を奪う