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Abstract
We investigate ferromagnetism and superconductivity in two types of two-band Hubbard mod-

els: the multi-orbital Hubbard model and the d-p model, with particularly paying attention to
effect of the interplay between the electron correlation and the band splitting. As strong cor-
relation plays a crucial role for these phenomena, we employ two complementary approaches:
the numerical diagonalization method for one-dimensional models and the dynamical mean-field
theory for the infinite-dimensional model. These approaches give us reliable results beyond the
perturbative approximation or the usual mean-field like approximation. For the one-dimensional
models, we calculate the critical exponent Kρ based on the Tomonaga-Luttinger liquid theory
and determine phase diagram of superconducting(SC) region by the condition Kρ > 1. The SC
region appears near partially polarized ferromagnetic region in the multi-orbital Hubbard model
with finite band splitting. Analysis of paring correlation functions for the ground state indicates
that the triplet paring is relevant to the superconductivity. In the one-dimensional d-p model, we
find enhancements of the singlet and triplet paring correlations at the SC region. Although only
the singlet paring is relevant to superconductivity near half-filling, the triplet paring increases
with electron filling and is relevant to the superconductivity as well as the singlet paring near
full-filling. In the infinite-dimensional d-p model, we calculate the local green’s function on the
basis of the dynamical mean-field theory, where the effective impurity Anderson model is solved
using the numerical diagonalization method. It shows the phase diagrams of the metal-insulator
transition on the ground state at half-filling and quarter-filling as functions of the Coulomb inter-
action and the band splitting. We obtain the transition temperatures for the ferromagnetism and
the superconductivity as functions of the Coulomb interaction, the band splitting and the electron
filling. It indicates that the transition temperature of the triplet superconductivity is higher than
that of the singlet superconductivity near the ferromagnetic state. These results suggest a close
relationship between the ferromagnetism and the superconductivity as a common feature of the
two-band Hubbard models.

1 Introduction
The strongly correlated electron systems with multi-band (multi-orbital) have attracted much

interest due to various interesting phenomena such as colossal magnetoresistance in manganites
La1−xSrxMnO3[1], triplet-pairing superconductivity in the ruthenate Sr2RuO4[2], metal-insulator
transition in alkali-doped fullerides AxC60[3] and one-dimensional superconductivity of CuO2 double
chain in Pr2Ba4Cu7O15−δ[4]. Among them, spin-state transition of cobalt oxides in La1−xSrxCoO3[5,
6, 7] give a good example displaying the effect of multi-orbital. Since the Hund’s rule coupling and
the crystal-field splitting between the t2g and eg orbitals are close to each other, the spin state of
the cobalt ion depends on temperature, doping concentration and crystal structure. With increas-
ing temperature, the low-spin state (t62ge

0
g, S = 0) of the Co3+ (3d6) ion gradually changes into an

intermediate-spin state (t52ge
1
g, S = 1) and/or a high-spin (HS) state (t42ge

2
g, S = 2)[6, 7, 8, 9]. With Sr

doping, La1−xSrxCoO3 shows a spin-glass state for x < 0.18 and a ferromagnetism for x > 0.18[10, 11].
Layered cobalt oxides such as NaxCoO2 also show a a variety of interesting properties as multi-

band systems. For example, large thermoelectric power is discovered in Na0.5CoO2[12]. Weak fer-
romagnetism has been observed in Na0.75CoO2[13]. The discovery of the superconductivity[14] in
NaxCoO2 · yH2O with Tc ≈ 5K for x ≈ 0.35 and y ≈ 1.3 has stimulated considerable attention on
these materials. It has been suggest that large degeneracy of electronic states due to a competition
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between the Hund’s rule coupling and the crystal-field splitting plays a key role in the electronic states
of NaxCoO2 as well as of La1−xSrxCoO3[15].

With the new findings of these interesting materials, theoretical studies on the interplay between
Coulomb interactions including the Hund’s rule coupling and band splitting by crystal-field are highly
desirable. The orbitally degenerate Hubbard model, which can be regarded as a kind of multi-band
system, has been extensively investigated to clarify the effect of orbital degrees of freedom in the
presence of intra-atomic Coulomb interaction. Many authors[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]
have studied the ferromagnetism of this model and revealed that Hund’s rule coupling plays a crucial
role in ferromagnetism.

On the other hand, multi-band Hubbard model, which includes the effect of band splitting explic-
itly, has also been extensively studied for a long time. In particular, there has been much theoretical
interest in the d-p model as a model of the copper oxide high-temperature superconductor. The model
contains hopping tpd between the Cu (d-orbital) site and the O(p-orbital) site and strong repulsive
interactions at the d and p site (Ud and Up, respectively). In addition, it can contain the nearest-
neighbor d-p interaction Upd and/or hopping tpp between the nearest-neighbor p sites. It is widely
accepted as a basic model describing the electronic structure of the Cu-O network. Many theoretical
studies have been performed on this model to explain the superconductivity and/or the antiferro-
magnetism of the copper oxides. A few work has been discussed the possibility of so called flat band
ferromagnetism in a type of d-p model[27].

In the present work, we address the multi-orbital Hubbard model in one-dimension and the d-p
model in one- and infinite-dimension, while particularly paying attention to the effect of the interplay
between the Coulomb interactions and the band splitting ∆. At the point of view of ferromagnetism
and superconductivity in itinerant electron systems, we discuss these two models in detail. As the
strong correlation effect plays crucial roles in these interesting phenomena, a nonperturbative and
reliable approach is required. We employ the numerical diagonalization method for the multi-orbital
Hubbard model and the d-p model with finite system sizes in one-dimension, and the dynamical
mean field theory for the infinite-dimensional d-p model. These approaches are complementary for
each other in dimensionality and expected to give us reliable results beyond the perturbative or the
mean-field like approximations.

Numerical diagonalization approach has already been applied for the multi-orbital Hubbard model
at ∆ = 0 case[17, 18]. Although the available system size is fairly small, the results are in good agree-
ment with the strong coupling analysis[18] and the results from the density-matrix renormalization-
group method[23]. To examine the superconductivity, we calculate the critical exponent of the correla-
tion functions Kρ based on the Luttinger liquid theory[28, 29, 30, 31]. The reliability of this approach
has been extensively tested for various one-dimensional models such as the Hubbard model[32], the
t-J model[33] and the U -V model[34]. We can thus expect that this approach is reliable for the
multi-orbital Hubbard model and the d-p model as well.

In the limit of infinite dimensions, the self-energy becomes purely site-diagonal and the dynamical
mean field theory (DMFT) becomes exact. The local Green’s function is given by the impurity Green’s
function of an effective single impurity Anderson model. This effective one-site problem is calculated
by the numerical diagonalization of the finite size clusters. By using this method, Momoi et al. studied
the multi-orbital Hubbard model at ∆ = 0[17]. They show the phase diagram of the ferromagnetism,
but superconductivity was not discussed there. By calculating the magnetization and the pairing
susceptibility at finite temperature, we show the transition temperatures for the ferromagnetism and
the superconductivity as functions of the Coulomb interaction, the band splitting and the electron
filling.

2 Luttinger Liquid Relation
At first, we briefly discuss a general argument for 1D-electron systems based on the Luttinger

liquid theory. In the Luttinger liquid theory[28, 29, 30, 31], an effective Hamiltonian of 1D models in
the Tomonaga-Luttinger regime is generally given by

H =
vσ

2π

∫ L

0

dx
[
Kσ(∂xθσ)2 + K−1

σ (∂xφσ)2
]
+

vρ

2π

∫ L

0

dx
[
Kρ(∂xθρ)2 + K−1

ρ (∂xφρ)2
]
, (1)

where vσ, vρ, Kσ and Kρ are the velocities and coupling parameters of spin and charge parts, respec-
tively. According to the Luttinger liquid theory, some relations have been established as universal
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relations in one-dimensional single band models[30, 31]. In the model which is isotropic in spin space,
the coupling constant Kσ is renormalized to unity in the low energy limit and the critical exponents
of various types of correlation functions are determined by a single parameter Kρ.

For single band model, it is predicted that SC correlation is dominant for Kρ > 1 (the correlation
function decays as ∼ r

−(1+ 1
Kρ

) in the Tomonaga-Luttinger (TL) regime and as ∼ r
− 1

Kρ in the Luther-
Emery (LE) regime), whereas the CDW or SDW correlations are dominant for Kρ < 1 (the correlation
functions decay as ∼ r−(1+Kρ) in the TL regime and as ∼ r−Kρ in the LE regime). Here, the LE regime
is characterized by a gap in the spin excitation spectrum, while in the TL regime, the excitation is
gapless[28, 31]. In the case of non-interacting fermion systems, the exponent Kρ is always unity. Thus,
the effective interaction between quasi-particles is attractive for Kρ > 1 whereas that is repulsive for
Kρ < 1.

The critical exponent Kρ is related to the charge susceptibility χc and the Drude weight D by

Kρ =
1
2
(πχcD)1/2, (2)

with D = π
Nu

∂2E0(φ)
∂φ2 , where E0(φ) is the total energy of the ground state as a function of magnetic

flux Nuφ[31]. Here, the flux is imposed by introducing the following gauge transformation: cmσ† →
eimφ/Nac†mσ for an arbitrary site m. When the charge gap vanishes in the thermodynamic limit, the
uniform charge susceptibility χc is obtained from

χc =
4/Nu

E0(Ne + 2, Nu) + E0(Ne − 2, Nu)− 2E0(Ne, Nu)
, (3)

where E0(Ne, Nu) is the ground state energy of a system with Nu unit sites(cells) and Ne electrons.
The filling n is defined by n = Ne/Nu, where Nu is the total number of unit cells or sites. The values
of D and χc are calculated from the ground state energy of the finite size system through eq.(2) and
(3).

It is noted that the situation is complicated for two-band models. When both bands have been
occupied by electrons simultaneously, Fermi points appear in both bands. In this case, the electronic
state of the low energy is completely changed and we can not use the above relations[35, 36, 37, 38].
On the other hand, if the electron density is sufficiently small and/or the band splitting is sufficiently
large, electrons occupy only lower band. In this case, Fermi level exits in only lower band and the low
energy effective Hamiltonian is considered to be equivalent to that of the single band model. Therefore,
we can adopt the above Luttinger liquid relations of the single band model for even two-band model.

We numerically diagonalize the model Hamiltonian and obtain the value of Kρ from the ground
state energy of finite size systems using the standard Lanczos algorithm. In addition to the numerical
diagonalization method, we use mean-field(MF) approximation to calculate the ground state energy
and obtain the approximate value of Kρ of the infinite system. This approximation has been confirmed
to be reliable at least in the weak coupling regime[39].

3 Multi-orbital Hubbard Model
Previous works[17, 18, 19, 20, 21, 22, 23, 24] have studied the multi-orbital Hubbard model in

the case of the crystal-field splitting ∆ = 0. In one dimension, some rigorous results are shown in the
strong coupling limit U → ∞: the ground state is a fully polarized ferromagnetism for 0 < n < 2
except for n = 1 when U ′ and J = J ′ are positive and finite[21]. The numerical result suggests that
the ferromagnetism is stable also for n = 1 in the strong coupling region[23]. In infinite dimensions,
the dynamical mean-field theory shows the existence of the ferromagnetism in the same parameter
region observed in one dimension[22]. They revealed that Hund’s rule coupling J plays a crucial role
in ferromagnetism. However, possible mechanisms of superconductivity and the effect of crystal-field
splitting ∆ was not considered in these studies.

In this section, we examine ferromagnetism and related superconductivity in the multi-orbital
Hubbard model, while particularly paying attention to the effect of the interplay between J and
∆[40, 41, 42].
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3.1 Model Hamiltonian
We consider the following Hamiltonian for the one-dimensional multi-orbital Hubbard model:

H = −t
∑

i,m,σ

(c†i,m,σci+1,m,σ + h.c.) + U
∑

i,m

ni,m,↑ni,m,↓

+ U ′∑

i,σ

ni,u,σni,l,−σ + (U ′ − J)
∑

i,σ

ni,u,σni,l,σ +
∆
2

∑

i,σ

(ni,u,σ − ni,l,σ)

− J
∑

i,m

(c†i,u,↑ci,u,↓c
†
i,l,↓ci,l,↑ + h.c.)− J ′

∑

i,m

(c†i,u,↑c
†
i,u,↓ci,l,↑ci,l,↓ + h.c.), (4)

where c†i,m,σ stands for the creation operator of an electron with spin σ in the orbital m (= u, l) at
site i and ni,m,σ = c†i,m,σci,m,σ. Here, t represents the hopping integral between the same orbitals and
we set t = 1 in this study.

The interaction parameters U , U ′, J and J ′ stand for the intra- and inter-orbital direct Coulomb
interactions, the exchange (Hund’s rule) coupling and the pair-transfer, respectively. ∆ denotes the
energy difference between the two atomic orbitals, that is, crystal-field splitting. For simplicity, we
impose the relations, J = J ′ and U = U ′ + 2J ; the latter holds exactly in 3d-orbitals for ∆ = 0 and
is a good approximation for ∆ 6= 0. The model in eq. (4) is schematically represented by Fig. 1(a).
We numerically diagonalize the above model Hamiltonian up to 9 sites. In the noninteracting case
(U = U ′ = J = 0), the Hamiltonian eq. 4 yields a dispersion relation ε±(k) = −2t cos(k)± ∆

2 , where
k is the wave vector and ε+(k) (ε−(k)) represents the upper (lower) band energy. This band structure
is schematically represented by Fig. 1(b).

U’J

U

∆

t

t

J’
Ek

F

ε+(k)

ε−(k)

∆

(a) (b)

Figure 1: Schematic diagrams of (a) the model Hamil-
tonian and (b) the band structure in the noninteracting
case.

Figure 2: Schematic diagram of
Moebius boundary condition at
∆ = 0.

3.2 Result for degenerate case
We first exhibit the result at ∆ = 0 and compare it with the previous works. At ∆ = 0, two

bands are doubly degenerate and the finite size effect of the ordinary periodic boundary condition is
fairly large. To reduce it, we use the Moebius boundary condition, which has been already used in
t-J ladder models[43]. The Moebius boundary condition as shown in Fig.2, is a kind of the periodic
boundary condition and efficiently reduces the finite size effect of the systems than the ordinary
periodic boundary condition.

Figure 4 shows the phase diagram of the ground state for the Nu = 8 system at n = 0.5 (4elec-
trons/8sites) with the result of the DMRG method by Sakamoto et al.[23] on the U ′ vs. J parameter
plane. A ferromagnetic ground state with full spin polarization(S = max) appears around J ' U ′

for U ′ >∼ 3. The parameter regions J/U ′ À 1 and J/U ′ ¿ 1 are paramagnetic(S = 0). No partially
polarized state was found at this filling. Figure also shows that the difference between our result and
the DMRG result is small. The present result is similar to those by previous studies employing the
periodic or the anti-periodic boundary conditions, but the phase boundaries of their ferromagnetic
phases seem to depend on the system size greatly. We also indicate the phase boundary of the fer-
romagnetic phase by using the mean-field(MF) approximation in Fig.4. In this approximation, the
ground-state energy E0 is calculated as

E0 = < H >

=
∑

k<kF ,m,σ

ε±(k) + UNu

∑
m

< nm,↑ >< nm,↓ > +U ′Nu

∑
σ

< nu,σ >< nl,−σ >

+ (U ′ − J)Nu

∑
σ

< nu,σ >< nl,σ > +
∆
2

Nu

∑
σ

(< nu,σ > − < nl,σ >), (5)
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K
ρ
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∆=0

S=max

S=0 Jc
Jc

J=U’
J=U’/2

J=2U’

Figure 3: Kρ as a function of U ′ in the
cases of J = U ′/2, J = U ′ and J =
2U ′ at n = 0.5(4electrons/8sites). Jc

indicates the critical point of the singlet
ground state changing into the fully polar-
ized ferromagnetic(S=max) ground state.

0 5 10 15
0

5

10

15

U’

J

S=Max

n=0.5

S=0

∆=0

Sakamoto et al.
MF

MF(ferro)

Kρ=0.5
(Kρ<0.5)

SC

Figure 4: Phase diagram of the ferromag-
netic state on the U ′−J parameter plane for
n = 0.5(4electrons/8sites) at ∆ = 0. The
dashed line represents the phase boundary
of the ferromagnetic state obtained by MF
approximation. The solid triangle shows the
point of Kρ = 0.5 on the U ′-axis.

where <> represents the expectation value of operators by the noninteracting ground state. Here, the
terms −J

∑
i,m(c†i,u,↑ci,u,↓c

†
i,l,↓ci,l,↑ + h.c.) and −J ′

∑
i,m(c†i,u,↑c

†
i,u,↓ci,l,↑ci,l,↓ + h.c.) are omitted since

the expectation values of these terms are equal to zero. The result indicates that the ferromagnetic
phase appears all over the region except the near the origin. Comparing with the numerical results,
it seems to overestimate the ferromagnetic region.

Figure 5 shows the value of Kρ as a function of U ′ for J = 0 at quarter filling n = 1(4electrons/4sites).
We also show the result of the Green’s function Monte Carlo method obtained by Assaraf et al.[44]
and the MF approximation for Kρ[39], which are represented by the broken and the dashed lines in
fig.5, respectively. Here, Kρ of the MF approximation is estimated by the Luttinger liquid relation
as well as Numerical diagonalization method and the ground state is restricted to the singlet state,
that is, the condition < nm,↑ >=< nm,↓ > is imposed. It shows good agreement with the numerical
result in the weak coupling regime, ensuring the small finite-size effect of the numerical calculation.
As U ′ increases, Kρ decreases from unity to ∼ 0.42. For J = 0, the model Hamiltonian is equivalent
to the SU(4) Hubbard model and the metal-insulator(MI) transition occurs at Kρ = 0.5[44]. When
U ′ is larger than a critical value U ′

c ∼ 3, the MI transition is expected. Sakamoto et al. show the
n-dependence of the chemical potential at quarter filling and the existence of large charge gap in
the strong coupling region. Although the finite size effect does not allow the correct estimation of
the transition point, they claim that the metal-insulator transition occurs at finite positive value of
U ′ = J ∼ 3.

Figure 6 gives the value of Kρ as a function of U ′ in several conditions of J = U ′/2, J = U ′ and
J = 2U ′ at n = 1. As U ′ increases, Kρ decreases, while it increases for a large U ′ in the condition
J = 2U ′. In the region Kρ > 0.5, the SC correlation is expected to be the most dominant compared
with the CDW and SDW correlations. To confirm the SC state, we calculate the lowest energy of
the singlet state E0(φ) as a function of an external flux φ. As shown in Fig.7, the anomalous flux
quantization occurs in the region Kρ > 0.5, where the signature of it increases with J . It indicates
that the SC state is surely realized in this parameter region.

In Figure 8, we give the phase diagram of the ground state for Nu = 4 at the electron density
n = 1(4electrons/4sites) with the result of DMRG method[23] on the U ′ vs. J parameter plane. A
complete ferromagnetism with S=max appears around J ' U ′ in the strong coupling regime. This
result is in good agreement with the DMRG result obtained by Sakamoto et al.[23]. The dashed line
presents the boundary between the ferromagnetic state and the singlet state by using the mean-field
approximation. It seems to be fairly overestimate for the ferromagnetic region. It also indicates that
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Assaraf et al.

Figure 5: Kρ as a function of
U ′ in the cases of J = 0 for
n = 1.0 (4electrons/4sites) at
∆ = 0. The dashed line repre-
sents a MF estimation for Kρ.
The broken line indicates the
GFMC result obtained by As-
saraf et al.
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K
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Figure 6: Kρ as a function of
U ′ in the cases of J = U ′/2,
J = U ′ and J = 2U ′ for n =
1.0 (4electrons/4sites) at ∆ =
0.

0
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0.4

1.4

1.2

1.0

0.8

0.6

2π0

∆E

J=U’=0.0

∆=0

n=1

Figure 7: The energy differ-
ence E0(φ) − E0(0) as a func-
tion of an external flux φ at
n = 1.0(6electrons/6sites) at
∆ = 0.

the ferromagnetic region is smaller than the case of n = 0.5. In this ferromagnetic region, Sakamoto
et al. also claimed that the system shows the triplet SC for J > U ′, while it becomes insulator
for J < U ′. The SC phase boundary in the ferromagnetic region is smoothly connected to that in
the paramagnetic region as shown in Fig. 8. These results tell us that the Hund’s rule coupling
J plays important roles not only for the ferromagnetism but also for the superconductivity. In the
paramagnetic state (S=0), we plot the phase boundary separating the SC region with Kρ > 0.5
and the insulating region with Kρ < 0.5. As mentioned above, this SC phase is confirmed by the
anomalous flux quantization, while this quantization disappears in the insulating region with large U ′

(not shown). Within the bosonaization method, the SC state has been identified as the triplet SC
with spin gap[25]. However, very recent work claims that the relevant symmetry of the paring is not

0 5 10 15
0

5

10

15

U’

J

S=max

S=0

n=1

S=max

Kρ=0.5

Kρ<0.5

(SC)

Kρ>0.5

(INSULATOR)

(ferro SC)S=0

(INSULATOR)

(spin gapped)

(spin gapped)

MF

MF
(Ferro)

(SC)

Figure 8: Phase diagram of the ferromag-
netic state on the U ′ − J parameter plane
for n = 1(4electrons/4sites) at ∆ = 0. The
dashed line represents the phase boundary
of the ferromagnetic state obtained by MF
approximation. The solid triangle shows the
point of Kρ = 0.5 on the U ′-axis.

0 2 4 6
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1

n=8/6

K
ρ

S=maxJ=U’

U’

∆=0

S=0

Jc

J=0.5U’

J=2U’

Figure 9: Kρ as a function of U ′ for n = 4/3
(8electrons/6sites) at ∆ = 0.

6

Kazuhiro Sano and Yoshiaki Ōno

－6－



′p−′ wave like triplet but ′dxy−′ like singlet by using the bosonaization method and DMRG method
within the model at U ′ = 0[26].

To examine the case of over the quarter-filling(n=1), we calculate the value of Kρ as a function of
U ′ in several conditions of J = U ′/2, J = U ′ and J = 2U ′ at n = 4/3 (8electrons/6sites). As shown
in Figure 9, it seems to be similar to the case of (n ≤ 1. This result suggests that the overall aspect
of the electronic state dose not much depend on n.

3.3 Case for finite ∆
Next, we consider the case of ∆ > 0. When the lowest energy of the upper band, ε+(0), is larger than

the Fermi energy, EkF , electrons occupy only the lower band with kF = πn
2 and the model is regarded

as a ”single component” electron system. Hereafter, we mainly treat the case with ε+(0) > EkF . In
this case, we can not adopt the Moebius boundary condition, since the symmetry of inter-band is
broken by finite ∆. In the case n < 1, we find the following boundary conditions are suitable, that
is, the periodic(antiperiodic) boundary condition for the lower(upper) band at Ne = 4m + 2 and the
antiperiodic(periodic) boundary condition for the upper(lower) band at Ne = 4m, where Ne is the
total electron number and m is an integer. This boundary condition can be regard as an extension of
the Moebius boundary condition for the finite ∆.

For n > 1, on the other hand, our experience indicates that the usual boundary conditions, that is,
the periodic boundary condition at Ne = 4m+2 and the antiperiodic boundary condition at Ne = 4m
for the both bands, are little better. This choice of the boundary conditions is rather empirical, but
it seems to lead better results.

0 1 2 3

0.75

1

1.25

1.5

J(=U’)

K
ρ

n=2/3

∆=1.0

1.2
S=2

1.6
1.8

1.4

S=1

ferro(S=2)

S=1
S=1

MF

Figure 10: Kρ as a function of J(= U ′)
for n = 2/3(6electrons/9sites) at ∆ =
1.0, 1.2, 1.4, 1.6, and 1.8. The down arrows
indicate the critical points of J(= U ′). The
dashed line represents a weak coupling esti-
mation for Kρ.

0 1

0

0.2

0.4

0.6

E
(Φ

)−
E

(0
)

Φ/2π

J(=U’)=0.4

1.0

1.3

0.8

n=2/3

∆=1.2

Figure 11: The energy difference E0(φ) −
E0(0) as a function of an external flux φ
for J(= U ′) =0.4,0.8,1.0 and 1.3 at n =
2/3(6electrons/9sites) and ∆ = 1.2.

Figure 10 shows the value of Kρ as a function of J(= U ′) for several values of ∆ at the electron
density n = 2/3(6electrons/9sites). As J increases, Kρ decreases for a small J , while it increases for
a large J , and then becomes larger than unity. Since we consider the single component system, the
SC correlation is expected to be the most dominant compared with the CDW and SDW correlations
in the region Kρ > 1. To confirm the superconducting state, we calculate the lowest energy of the
singlet state E0(φ) as a function of an external flux φ. As shown in Fig. 11, the anomalous flux
quantization occurs clearly at J ∼ 1.3, where Kρ is about 1.1. When J = 0.4, Kρ is less than unity
and the anomalous flux quantization is not found.

When J is larger than a certain critical value, the ground state changes into the partially ferro-
magnetic state with S=1 or S=2 from the singlet state. In Fig. 10, the broken line represents the
MF approximation for Kρ. This approximation depends upon only the noninteracting ground state
where the lower band is exclusively occupied, as shown in Fig. 1. Therefore, the effect of the upper
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band is omitted and the result is independent of ∆. This approximation breaks down when the effect
of the upper band becomes crucial. In this regime, Kρ rapidly increases with increasing J , and finally
becomes larger than unity indicating the superconducting state. The critical values of J with Kρ = 1
are Jc ≈ 0.3, 1.0, 2.4 and 4.0 for ∆ = 1.0, 1.2, 1.6 and 1.8, respectively.

In Fig.12, we show the phase diagram of the superconducting state with Kρ > 1 together with
the partial ferromagnetic state with S = 1 and S = 2 on the U ′ vs. J parameter plane for
n = 2/3(6electrons/9sites) at ∆ = 1.2, where the S = 2 state is depicted by the bunch of thin
solid circles(shadowed region). The superconducting phase appears near the partially polarized ferro-
magnetic region. It extends from the attractive region with J < 0 and U ′ < 0 to the realistic parameter
region for 3d transition-metals with U ′ > J > 0. We have confirmed that the superconducting region
increases as ∆ decreases, as shown in Fig.10.

Figure 13 shows the global phase diagram on the U ′ − J plane for n = 4/3(8electrons/6sites)
at ∆ = 4.0. When U ′ >∼ J >∼ ∆, the fully polarized ferromagnetism with S = Smax appears. It
accompanies the partially polarized ferromagnetism with 0 < S < Smax for J <∼ ∆. Inset shows the
magnification of the phase diagram near the origin. As well as n < 1, the superconducting state
with Kρ > 1 appears near the partially polarized ferromagnetic region and it extends to the realistic
parameter region with U ′ > J > 0. The configuration of the partially polarized ferromagnetic state
and the superconducting state is similar to the case n < 1. When J exceeds ε+(0) − EkF , the inter-
band excitation develops and the occupation number of the upper band increases, which results in
a large orbital fluctuation accompanied by the fluctuation between the low-spin and the high-spin
states. The mechanism of superconductivity may be related to this orbital fluctuation. We note that
superconductivity is also observed for the J ′ = 0 (J 6= 0) case in contrast to the previous study[45, 46],
where the pair-transfer J ′ is crucial to superconductivity. The existence of the partially polarized
ferromagnetism for ∆ > 0 has been reported in a different type of two-band Hubbard model[40].

In Fig. 14, we show the doping dependence of the critical values of J for the superconductivity
and the ferromagnetism at ∆ = 4 with J = U ′, where we use n=4/3, 10/7, 3/2, 8/5 and 12/7 systems.
We determine the critical values on condition that Kρ > 1 for the superconductivity and S > 0 for
the ferromagnetism. Although the finite size effect is considerably large, the phase boundary for the
superconductivity can be approximately given by the phenomenological equation, Jc = ε+(0)− EkF

.
Here, ε+(0) − EkF

corresponds to the lowest energy of the single-particle excitation from the lower
band to the upper band. This equation was found to be a good approximation for various n > 1[41].

0 2 4
0

2

4

J

U’

Kρ<1

Kρ>1

partial ferro

S=2
S=1

S=0

S=1

∆=1.2
n=2/3SC

Figure 12: Phase diagram of the supercon-
ducting state with Kρ > 1 and the ferromag-
netic states with S = 1 and S = 2(shadowed
region depicted by the bunch of thin solid
circles) on the U ′ − J parameter plane for
n = 2/3(6electrons/9sites) at ∆ = 1.2.
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Figure 13: Global phase diagram on the U ′ − J
plane for n = 8/6 at ∆ = 4.0. The dashed
line indicates the phase boundary of the com-
plete(partial) ferromagnetic state obtained by
the MF approximation. Inset shows the mag-
nification of the phase diagram near the origin.
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Figure 14: Phase diagram on the n − J
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ε+(0) − EkF (see text) as a function of
n. The solid(dashed) line indicates the
phase boundary of the complete(partial) fer-
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∆

Su−u,Tu−u Sul

Tul

∆

Sl−l,Tl−l Sll

Figure 15: Schematic diagrams of various
types of superconducting paring; Sll, Suu,
Sl−l, Su−u and Sul( singlet paring) and
Tl−l(r), Tu−u(r) and Tul(r) (triplet paring)

We also show the phase boundary of the ferromagnetic state obtained by the MF approximation. It
seems to consist with the numerical result.

3.4 Paring correlation functions
Next, we consider superconducting paring of the system, as shown in Fig. 15. In Fig.16, we show var-

ious types of superconducting paring correlation functions C(r) in detail for n = 2/3(6electrons/9sites)
at ∆ = 1.0 and J(= U ′) = 1.04. The paring correlation functions are defined by

Sll(r) =
1

Nu

∑

i

< c†i,l,↑c
†
i,l,↓ci+r,l,↓ci+r,l,↑ >, (6)

Suu(r) =
1

Nu

∑

i

< c†i,l,↑c
†
i,u,↓ci+r,u,↓ci+r,u,↑ >, (7)

Sl−l(r) =
1

2Nu

∑

i

< (c†i,l,↑c
†
i+1,l,↓ − c†i,l,↓c

†
i+1,l,↑)(ci+r+1↓ci+r,l,↑ − ci+r+1,l,↑ci+r,l,↓) >, (8)

Su−u(r) =
1

2Nu

∑

i

< (c†i,u,↑c
†
i+1,u,↓ − c†i,u,↓c

†
i+1,u,↑)(ci+r+1,u,↓ci+r,u,↑ − ci+r+1,u,↑ci+r,u,↓) >,(9)

Sul(r) =
1

2Nu

∑

i

< (c†i,l,↑c
†
i+1,u,↓ − c†i,l,↓c

†
i+1,u,↑)(ci+r+1,u,↓ci+r,l,↑ − ci+r+1,u,↑ci+r,l,↓) >, (10)

Tl−l(r) =
1

2Nu

∑

i

< (c†i,l,↑c
†
i+1,l,↓ + c†i,l,↓c

†
i+1,l,↑)(ci+r+1↓ci+r,l,↑ + ci+r+1,l,↑ci+r,l,↓) >, (11)

Tu−u(r) =
1

2Nu

∑

i

< (c†i,u,↑c
†
i+1,u,↓ + c†i,u,↓c

†
i+1,u,↑)(ci+r+1,u,↓ci+r,u,↑ + ci+r+1,u,↑ci+r,u,↓) >,(12)

Tul(r) =
1

2Nu

∑

i

< (c†i,l,↑c
†
i+1,u,↓ + c†i,l,↓c

†
i+1,u,↑)(ci+r+1,u,↓ci+r,l,↑ + ci+r+1,u,↑ci+r,l,↓) >, (13)
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where C(r) = Sll(r), Suu(r), Sl−l(r), Su−u(r) and Sul(r) denote the singlet paring correlation functions
on the same site in the lower orbital, on the same site in the upper orbital, between the nearest neighbor
sites in the lower orbital, between the nearest neighbor sites in the upper orbital, between lower
and upper orbitals on the same site, respectively. Further, Tl−l(r), Tu−u(r) and Tul(r) are the triplet
paring correlation functions between the nearest neighbor sites in the lower orbital, between the nearest
neighbor sites in the upper orbital and between lower and upper orbitals on the same site, respectively.
The absolute value of Tu−u(r) is small, but the correlation of it is the slowest to decay. This result

1 2 3 4 5

10−6

10−4

10−2

n=6/9  ∆=1.0

|C
(r

)|

r

Sll

Sl−l

Sul

Suu

Su−u

Tl−l

Tul

Tu−u

J(=U’)=1.04

Figure 16: The singlet paring correlation
functions C(r) = Sll(r), Sl−l(r), Suu(r),
Su−u(r), Sul(r) and the triplet correlation
functions Tl−l(r), Tu−u(r), Tul(r), respec-
tively(see text). Here we show the ab-
solute value of the correlation functions
at ∆ = 1 and J(= U ′) = 1.04 for
n=2/3(6electrons/9sites).

100

101

1 2 3 4 5 6
100

101

102

103

Su−u

Sul

Sl−l

∆=1.0

|R
(r

)|

Suu

Sll

|R
(r

)| ∆=1.0

Tu−u

Tul

Tl−l

r

r0.42

Figure 17: The ratio of the sin-
glet paring correlation functions
R(r) = C(r)J=1.04/C(r)J=0.2 for Sl−l(r),
Suu(r), Su−u(r), Sul(r) and that of the
triplet correlation functions for Tl−l(r),
Tu−u(r), Tul(r) with the power-low r0.42,
respectively(see text). The broken line
represents the power-low r0.42 predicted by
the Luttinger liquid relation.

seems to suggest that the relevant paring of the superconductivity is the tripletparing between lower
and upper orbitals on the same site and the ferromagnetic fluctuation near the ferromagnetic phase
may cause the paring. To clarify the behavior of the correlation functions, we calculate the ratio R(r)
of the paring correlation functions at J(= U ′) = 1.04 and that of J(= U ′) = 0.2 as

R(r) =
C(r)J=1.04

C(r)J=0.2
. (14)

Although the correlation function C(r) decays as distance r increases, the function R(r) for relevant
paring is expected to increase with r, because the value of Kρ at J = 1.04 is larger than that at
J = 0.2, where Kρ is about at 1.4 and 0.98, respectively. Then, the behavior of R(r) is expected
to ∼ r0.42. In fig.17, we show R(r) for Sll(r), Sl−l(r), Suu(r), Su−u(r) and Sul, (upper panel) and
the triplet paring correlation functions Tl−l(r), Tu−u(r) and Tul(r) with the power-low r0.42 predicted
by the Luttinger liquid relation (lower panel), respectively. It indicates that that function R(r) for
the triplet paring, Tu−u, is much enhanced for long range paring correlation. On the other hand, the
remains are not enhanced or decay as r increases. These results suggest that the paring correlation
function Tu−u(r) is most relevant paring to the superconductivity. Although the system size is too
small to compare the slope of the function R(r) with the power-low enhancement ∼ r0.42 directly, the
behavior of R(r) for Tu−u(r) seems to be roughly consistent with the result of the Luttinger liquid
relation.

4 d-p Chain Model
In the previous works[47, 48, 49, 50, 51, 52], the present authors and many other authors studied

the one-dimensional d-p model with large on-site Coulomb repulsion Ud at Cu sites and intersite re-
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∆

Figure 18: Schematic diagrams of (a) the model Hamiltonian and (b) the band structure in the
noninteracting case.

pulsion Upd, by using the numerical method. They claimed that the superconducting (SC) correlation
is found to be dominant compared with the charge density wave (CDW) and spin density wave (SDW)
correlations and the parameter Upd is central in inducing a SC state. However, we found that if the
hopping term tpp is added to the model, the situation will be completely changed[53]. It enhances the
fluctuation of charge and spin, and increases the exponent Kρ as parameter Upd does. Therefore, the
repulsive interaction Upd is not always necessary for the SC state.

In this section, we reexamine the one-dimensional d-p model in the presence of the hopping term
tpp to clarify the electronic structure of the SC state, especially paying attention to the symmetry of
the paring correlation.

4.1 Model Hamiltonian
We consider the following model Hamiltonian for the Cu-O chain in the hole picture;

H = tpd

∑

<ij>,σ

(p†iσdjσ + h.c.) + tpp

∑

<ij>,σ

(p†iσpjσ + h.c.)

+ εd

∑

j,σ

d†jσdjσ + εp

∑

i,σ

p†iσpiσ + Ud

∑

j

n̂dj↑n̂dj↓, (15)

where d†jσ and p†iσ stand for creation operators of a hole with spin σ in the Cu(d) orbital at site j and
of a hole with spin σ in the O(p) orbital at site i, respectively, and n̂djσ = d†jσdjσ. Here, tpd stands
for the transfer energy between the nearest-neighbor d and p sites and will be set at unity (tpd=1)
hereafter in this study. The atomic energy levels of d orbital and p orbital are given by εd and εp,
respectively. The charge-transfer energy ∆ is defined as ∆ = εp − εd.

For the noninteracting case (Ud = 0), the Hamiltonian in eq. (15) is easily diagonalized to yield a
dispersion relation

E±(k) =
1
2

{
εd + εp + 2tpp cos k ±

√
(∆ + 2tpp cos k)2 + 16(tpd cos (k/2))2

}
, (16)

where k is a wave vector and E+(k)(E−(k)) represent an upper (lower) band energy. For tpp > 0, the
width of the lower band E−(k) decreases with decreasing ∆ and becomes perfectly flat at ∆flat =
2tpp − t2pd/tpp. When ∆ < ∆flat, the band bends with a peak at k = 0. To investigate the electronic
structure of the interacting case, we numerically diagonalize the Hamiltonian up to 14 sites (7 unit
cells). To carry out a systematic calculation, We use the periodic boundary condition for Nh = 4m+2
and the antiperiodic boundary condition for Nh = 4m, where Nh is the total hole number and m is
an integer.

4.2 Critical exponent Kρ

In Fig. 19, we show the numerical results of Kρ obtained through eq. 2 as a function of Ud for
n = 4/3(8holes/6units) at ∆ = 2 and tpp = 0.5. We also plot Kρ obtained through the mean field
(MF) approximation, respectively. In the MF approximation, the renormalized bands Ẽ±(k) are given
by eq. 16 in which ∆ is replaced by

∆̃ = ∆− 1
2
Ud < nd >, (17)

where < nd > is the hole density at a d site and is determined by solving the self-consistent equation in
the MF approximation. Using the renormalized band Ẽ−(k), we can calculate the charge susceptibility
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Figure 19: The critical exponent Kρ as a
function of Ud at ∆ = 2 and tpp = 0.5 for
n = 4/3(8holes/6units). The dashed lines
represent the results of the MF approxima-
tion (See in the text) Inset shows the energy
difference E0(φ)−E0(0) as a function of an
external flux φ
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Figure 20: The SC region sandwiched be-
tween the two lines of Kρ = 1 and Kρ =
∞ on the n-Ud parameter plane at ∆ =
2 and tpp = 0.5. Here, we use n =
8/6, 10/7, 6/4, 8/5, 10/6 and 12/7 systems.

χc and the Drude weight D. Substituting those values into eq. (2), we obtain Kρ within the MF
approximation. In the weak coupling regime, the results of the numerical diagonalization are in good
agreement with the MF approximation. It also seems to be roughly consistent with the numerical
results even in the strong coupling regime except for Ud

>∼ 6.
When Ud

<∼ 3, Kρ decreases as Ud increases. For sufficiently large Ud, Kρ increases with increasing
Ud and diverges at Ud ∼ 6.8 when the charge susceptibility diverges. The region where Kρ is larger than
unity appears at 6.5 <∼ Ud

<∼ 6.8. When Kρ > 1, the SC correlation is expected to be most dominant
compared with the CDW and SDW correlations. Inset shows the energy difference E0(φ)− E0(0) as
a function of an external flux φ. It shows that the anomalous flux quantization occurs at Ud = 6.7,
when Kρ is about 2.0. While, at Ud = 6.0, Kρ ' 0.86 and the anomalous flux quantization is not
found. These result also confirms the SC phase at Ud = 6.7. The divergence of Kρ suggests that
the effective bandwidth is close to zero. In fact, if we use the numerical value of < nd >' 0.83 with
Ud = 6.7 in eq. (7), we obtain ∆̃ ∼ −0.8 and the effective bandwidth is nearly equal to 0.1. It is
very small compared with the noninteracting band. The result of the anomalous flux quantization
shows that the variation of |E0(φ)−E0(0)| at Ud = 6.7 is much smaller than that at Ud = 6.0. It also
indicates that the effective bandwidth is small.

Figure 20 shows the SC region where 1 < Kρ < ∞ on the n − Ud parameter plane at ∆ = 2 and
tpp = 0.5. We use n = 8/6, 10/7, 6/4, 8/5, 10/6 and 12/7 systems, where numerator and denominate
correspond to numbers of electrons and unit cells, respectively. The region sandwiched between the
two lines of Kρ = 1 and Kρ = ∞ corresponds to the SC region. It is narrow near n = 1.4, however,
it increases with increasing n.

4.3 Paring correlation functions
We investigate various types of superconducting paring in detail. as shown in Fig. 21. Figure 22

shows the paring correlation functions C(r) defined by

Sp−on(r) =
1

Nu

∑

i

< p†i↑p
†
i↓pi+r↑pi+r↓ >, (18)

Sd−on(r) =
1

Nu

∑

i

< d†i↑d
†
i↓di+r↑di+r↓ >, (19)
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Figure 21: Schematic diagrams of various
paring for d-p model.
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Figure 22: The singlet paring correla-
tion functions C(r) = Sp−on(r), Sp−p(r),
Sd−on(r), Sd−d(r) and Sd−p(r) (upper
panel) and the triplet paring correlation
functions Tp−p(r), Td−d(r) and Td−p(r)
(lower panel), respectively (see text). Here
we show the absolute value of the correlation
functions at ∆ = 2, tpp = 0.5 and Ud = 6.7
for n=4/3(8holes/6units).

Sp−p(r) =
1

2Nu

∑

i

< (p†i↑p
†
i+1↓ − p†i↓p

†
i+1↑)(pi+r+1↓pi+r+1↑ − pi+r+1↑pi+r↓) >, (20)

Sd−d(r) =
1

2Nu

∑

i

< (d†i↑d
†
i+1↓ − d†i↓d

†
i+1↑)(di+r+1↓di+r+1↑ − di+r+1↑di+r↓) >, (21)

Sd−p(r) =
1

2Nu

∑

i

< (d†i↑p
†
i↓ − d†i↓p

†
i↑)(pi+r↓di+r↑ − pi+r↑di+r↓) >, (22)

Tp−p(r) =
1

2Nu

∑

i

< (p†i↑p
†
i+1↓ + p†i↓p

†
i+1↑)(pi+r+1↓pi+r+1↑ + pi+r+1↑pi+r↓) >, (23)

Td−d(r) =
1

2Nu

∑

i

< (d†i↑d
†
i+1↓ + d†i↓d

†
i+1↑)(di+r+1↓di+r+1↑ + di+r+1↑di+r↓) >, (24)

Td−p(r) =
1

2Nu

∑

i

< (d†i↑p
†
i↓ + d†i↓p

†
i↑)(pi+r↓di+r↑ + pi+r↑di+r↓) >, (25)

where Sp−on(r), Sd−on(r), Sp−p(r), Sd−d(r) and Sd−p(r) denote the singlet paring correlation func-
tions on a same p site, on a same d site, between the nearest neighbor p sites, between the nearest
neighbor d sites and between the nearest neighbor p and d sites, respectively. Further, Tp−p(r),
Td−d(r) and Td−p(r) denote the triplet paring correlation functions between the nearest neighbor p
sites, between the nearest neighbor d sites and between the nearest neighbor p and d sites, respectively.
Here, we show the absolute value of the correlation functions at ∆ = 2, tpp = 0.5 and Ud = 6.7 for
n=4/3(8holes/6units). The orders of the absolute value of these correlation functions are almost equal
to one another.

However, the correlation functions C(r) for Sp−on(r) and Sp−p(r) seem to decay slower than
that of the remains. It suggests that these paring play an important role in the superconductivity.
We also examine the ratio of the paring correlation functions R(r) at Ud = 6.7 and Ud = 6.0 as
R(r) = C(r)Ud=6.7/ = C(r)Ud=6.0, where Kρ ∼ 2.0 at Ud = 6.7 and Kρ ∼ 0.86 at Ud = 6.0. The
function R(r) for relevant paring is expected to behave as r1.1. In fig.23, we show the ratio of the
paring correlation functions R(r) for Sp−on(r), Sp−p(r), Sd−on(r), Sd−d(r) and Sd−p(r) with the
power-low r1.1 (upper panel) and that of the triplet paring correlation functions for Tp−p(r), Td−d(r)
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Figure 24: The ratio of the sin-
glet paring correlation functions
R(r) = C(r)Ud=6.59/C(r)Ud=4.14 for
Sp−on(r), Sp−p(r), Sd−on(r), Sd−d(r)
and Sd−p(r)(upper panel), and that of
the triplet paring correlation functions
for Tp−p(r), Td−d(r) and Td−p(r) (lower
panel), respectively. Here we show the
absolute value of R(r) at ∆ = 2, tpp = 0.5
for n=12/7(12holes/7units). Inset shows
R(r) for Sp−p(r) and Tp−p(r) with the
power-low r0.15.

and Td−p(r) (lower panel), respectively. It indicates that that R(r) for Sp−on(r) and Sp−p(r) are
much enhanced at long range paring correlation and seem to be roughly consistent with the power-
low obtained by the Luttinger liquid relation. On the other hand, the remains decay as distance r
increases or are almost constant. These results suggest that the singlet paring correlation functions
Sp−on(r) and Sp−p(r) are most relevant to the superconductivity and the triplet paring is irrelevant.

On the other hand, the situation is changed for large hole density. In this case, the triplet par-
ing correlation is enhanced as well as the singlet paring correlation. In fig.24, we show the ratio
of the singlet paring correlation functions R(r) = C(r)Ud=6.59/C(r)Ud=4.14 for Sp−on(r), Sp−p(r),
Sd−on(r), Sd−d(r) and Sd−p(r) (upper panel), and that of the triplet paring correlation functions for
Tp−p(r), Td−d(r) and Td−p(r)(lower panel), respectively, where we show the absolute value of R(r)
for n=12/7(12holes/7units). Here, R(r) of the relevant paring is expected to behave as r0.15 since
Kρ ∼ 1.15 at Ud = 6.59 and Kρ ∼ 1.0 at Ud = 4.14. Inset shows R(r) for Sp−p(r) and Tp−p(r) with
the power-low r0.15. It shows that R(r) for Tp−p(r) increases with r as well as that for Sp−p(r), which
seems to be roughly consistent with the power-low r0.15 predicted by the Luttinger liquid relation.
suggests that the triplet paring becomes relevant to the superconductivity as well as the singlet paring
near n = 2.

5 d-p Model in Infinite Dimensions
Recently, some significant progress has been achieved in understanding the strongly correlated

electron systems by using the dynamical mean-field theory (DMFT)[54, 55]. In this approach, the
lattice problem is mapped onto an effective impurity problem where a correlated impurity site is
embedded in an effective uncorrelated medium that has to be determined self-consistently. To solve
the effective impurity problem, several methods have been applied including the iterated perturbation
theory[55], the non-crossing approximation[56], the quantum Monte Carlo (QMC) method[57], the
exact diagonalization (ED) method[58] and the numerical renormalization group (NRG) method[59,
60]. The DMFT becomes exact in the limit of infinite spatial dimensions (d = ∞)[54] and believed to
be a good approximation in high dimensions.

14

Kazuhiro Sano and Yoshiaki Ōno

－14－



In the d = ∞ single-band Hubbard model at half-filling, the Mott metal-insulator transition is
found to occur as a first-order phase transition at finite temperature below a critical temperature
Tcr[55]. Below Tcr, a coexistence of the metallic and insulating solutions is found for the same value
of the on-site Coulomb interaction U in the range Uc1 < U < Uc2[55, 60]. The magnetic phase
diagram was obtained as a function of doping, temperature and U . A commensurate antiferromagnetic
order changes to an incommensurate state at a value of the doping which depends on U [61]. The
ferromagnetism was observed for an intermediate interaction strength U >∼ 2 in non-bipartite lattices
such as the fcc-type lattice[62] but was completely suppressed for U <∼ 20 in bipartite lattices such as
the hypercubic lattice[63]. The superconducting phase is absent in the d = ∞ single-band Hubbard
model[64].

The DMFT has also been applied to the multi-band Hubbard model to elucidate the effect of the
Hund’s rule coupling on the Ferromagnetism[20, 22] and the Mott transition[65, 66]. Several authors
have extensively studied the d-p model using the DMFT[58, 67, 68, 69, 70, 71, 72, 73, 74, 75]. The
Mott transition was found to occur at n = 1 (or n = 3)[67, 68, 69, 70, 71, 73, 74], where n is the
total electron number per unit cell and given by the sum of p- and d-electron numbers: n = np + nd.
The phase diagram of the Mott transition was obtained over the whole parameter regime including
the Mott-Hubbard type (U < ∆) and the charge-transfer type (U > ∆)[69, 70]. When the carrier is
doped with n > 1, the superconductivity was observed in the charge-transfer regime[58, 67, 69], while
it was not observed in the Mott-Hubbard regime. The antiferromagnetism was also observed at and
near n = 1[75]. More recently, the present authors discussed the ferromagnetism which was found to
occur at and near n = 2 in the intermediate interaction strength U ≈ 2∆ >∼ 2[72]. Therefore it is
interesting to discuss the relationship between the magnetism and the superconductivity in the d-p
model in infinite dimensions and to obtain the phase diagram as functions of the parameters such as
the interaction, the electron filling and the temperature.

5.1 Model and formulation
We consider the d-p model on a Bethe lattice with infinite connectivity z →∞. The Hamiltonian

is written as

H =
∑

i,j,σ

(ti,jd
†
iσpjσ + h.c.) + εp

∑

j,σ

p†jσpjσ + εd

∑

i,σ

d†iσdiσ + Ud

∑

i

nd
i↑n

d
i↓, (26)

where d†iσ and p†jσ stand for creation operators of a electron (or a hole) with spin σ in the d-orbital
at site i and in the p-orbital at site j, respectively. nd

i,σ = d†iσdiσ. ti,j = tpd√
z

represents the transfer
energy between the nearest neighbor site and the parameter tpd will be set to unity in the present
study. The atomic energy levels of d-orbital and p-orbital are given by εd and εp, respectively. The
charge-transfer energy ∆ is defined as ∆ = εp − εd > 0.

In the DMFT, the effective action of the impurity problem is given by

S = Ud

∫ β

0

dτnd↑(τ)nd↓(τ)−
∫ β

0

∫ β

0

dτdτ ′
∑

σ

d†σ(τ)D−1
0σ (τ − τ ′)dσ(τ ′), (27)

where the Weiss function D0σ includes effects of the interaction at all the sites except the impurity
site. This action is derived by tracing out the fermionic degrees of freedom in the original lattice model
except the impurity site. The local Green’s function Dσ(τ−τ ′) = −〈Tdσ(τ)d†σ(τ ′)〉S is calculated with
this action. Using D0σ and Dσ, we introduce the local self-energy Σσ(iωn) = D0σ(iωn)−1−Dσ(iωn)−1,
where ωn is the Matsubara frequency, ωn = (2n + 1)π/β. The self-consistency condition for the local
Green’s functions gives the relations

Dσ(iωn) =
∫

dεN(ε)× iωn + µ− εp

(iωn + µ− εd − Σσ(iωn))(iωn + µ− εp)− ε2
, (28)

Pσ(iωn) =
∫

dεN(ε)× iωn + µ− εd − Σσ(iωn)
(iωn + µ− εd − Σσ(iωn))(iωn + µ− εp)− ε2

, (29)

where µ is the chemical potential and Pσ(τ − τ ′) = −〈Tpσ(τ)p†σ(τ ′)〉S is the local Green’s function
at p-site. For the Bethe lattice with z = ∞, the density of states is given by a semi-circular function,
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N(ε) =
√

4− (ε/tpd)2/2πtpd. Using the semi-circular density of states in eqs.(28) and (29) and
eliminating Σσ(iωn), we obtain the simple form of the self-consistency equations

D0σ(iω)−1 = iωn + µ− εd − t2pdPσ(iωn), (30)

Pσ(iω)−1 = iωn + µ− εp − t2pdDσ(iωn). (31)

To calculate the local Green’s function Dσ(iωn) for a given D0σ(iωn), we use the numerical diag-
onalization method (DMFT-ED method). The self-consistency equations (30) and (31) lead a new
D0σ(iω) and we repeat the calculation of the local Green’s function. This process is iterated until the
solutions converge.

In the DMFT-ED method, we approximately solve the impurity Anderson model of a finite-size
cluster;

HAnd = ε0σ

∑
σ

ndσ +
Ns∑

l=2,σ

εlσc†lσclσ +
Ns∑

l=2,σ

Vlσ(d†σclσ + c†lσdσ) + Udnd↑nd↓, (32)

where ε0σ is the impurity level and εlσ (l = 2, 3, ..., Ns) are levels of the ’conduction electron’ hybridized
with the impurity by Vlσ. We regard the non-interacting Green’s function GAnd

0σ (iωn) as the Weiss
function D0σ(iω) in the action eq.(27). Then, the interacting Green’s function GAnd

σ (iωn) corresponds
to the local Green’s function Dσ(iω) in the original lattice problem. Here, GAnd

0σ (iωn) is defined by

GAnd
0σ (iωn) =

1

iωn − ε0σ −
∑Ns

l=2

V 2
lσ

iωn−εlσ

. (33)

For a given D0σ(iω), we determine 2Ns−1 parameters ε0σ, εlσ, Vlσ(l = 2, 3, ..., Ns) to make GAnd
0σ (iωn)

as close to D0σ(iω) as possible. Using these parameters, we diagonalize the finite cluster of the impurity
Anderson model, and calculate GAnd

0σ (iωn) (D0σ(iωn)). At finite temperature, the Green’s function is
straightforwardly calculated from the full set of states |i〉 with eigenvalues Ei according to

Dσ(iωn) =
1
Z

∑

i,j

|〈i|d†σ|j〉|2
iωn − Ei + Ej

(e−βEi + e−βEj ). (34)

Using the Lanczos method with the continued-fraction expansions, we also calculate the zero tem-
perature Green’s functions. In this case, we replace the Matsubara frequencies by a fine grid of
imaginary frequencies, β̃ (iωn = (2n + 1)π/β̃), where the fictitious inverse temperature β̃ determines
a low-frequency cut-off.

5.2 Metal-Insulator transition at n = 2
First, we consider the paramagnetic state at zero temperature for n = nd + np = 2. In the

non-interacting case Ud = 0, the system is a band-insulator with the energy gap ∆ for ∆ 6= 0 while
it is a semimetal for ∆ = 0. Within the restricted Hartree-Fock (HF) approximation, the energy gap
is given by ∆ − Udnd

2 . Then the system is metallic for Ud = 2∆, otherwise it is insulating. We note
that nd = np = 1 for Ud = 2∆ due to the particle-hole symmetry. In the inset in Fig. 25, we show
the chemical potential µ as functions of n for Ud = 7, 8, 9, 10 at ∆ = 6 and T = 0 calculated from the
DMFT-ED method with the system size Ns = 8[72]. In this calculation, the solution is restricted to
the paramagnetic state with ε0σ = ε0, εlσ = εl and Vlσ = Vl for l = 2, 3, ..., Ns. When Ud increases
from Ud = 0, the discontinuity in the chemical potential at n = 2 decreases and finally becomes zero
at a critical value, where a transition from the band-insulator to the correlated semimetal occurs[67].
The critical values for the metal-insulator transition are plotted in Fig. 25. In contrast to the HF
approximation, the metallic state is found in the wide parameter region due to a correlation effect
considered in the DMFT.

5.3 Ferromagnetism
At low temperature, the correlated semimetal mentioned above becomes unstable compared to a

ferromagnetic state. In Fig. 26, we plot the magnetization for the d-electron Md, that for the p-electron
Mp and the total magnetization M = Md +Mp as functions of the temperature T at n = 2 for Ud = 8
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Figure 25: The phase boundary separating the metallic and insulating regimes as a function of Ud and
∆ at n = 2 and T = 0. The inset shows the chemical potential as functions of n for Ud = 7, 8, 9, 10 at
∆ = 6 and T = 0 calculated from the DMFT-ED method with Ns = 8.

and ∆ = 4 calculated from the DMFT-ED method with Ns = 6[72]. As shown in Fig. 26, Md and Mp

have opposite sign to each other. In the low temperature limit, both of Md and Mp become constant,
while the sum of them M becomes zero. The feature of the ferromagnetism from the DMFT is
similar to that from the HF approximation as shown in Fig. 26. However, the transition temperature
Tc from the HF approximation is much higher than that from the DMFT (see also Fig. 29). In
Fig. 27, we plot the magnetization as functions of Ud with keeping ∆ = Ud

2 at n = 2 and T = 0.01
calculated from the DMFT-ED method together with those from the HF approximation. When Ud

increases, the each component of the magnetization monotonically increases. In both approximations,
the ferromagnetism is observed for the intermediate interaction strength Ud

>∼ 2. This is a striking
contrast to the single-band Hubbard model where the ferromagnetism is observed only for the strong
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Figure 26: The magnetization for the d-
electron Md, that for the p-electron Mp and
the total magnetization M = Md + Mp as
functions of the temperature T at n = 2,
obtained from the DMFT-ED method for
Ud = 8 and ∆ = 4 with Ns = 6 and from the
HF approximation (dashed lines) for Ud = 2
and ∆ = 1.
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Figure 27: The magnetization for the d-
electron Md, that for the p-electron Mp and
the total magnetization M = Md + Mp as
functions of Ud with ∆ = Ud/2 at n = 2
and T = 0.01, obtained from the DMFT-
ED method and from the HF approximation
(dashed lines).
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coupling region U >∼ 20 in bipartite lattices within the DMFT[63]. We note that the value of the
magnetization from the DMFT is about five times smaller than that from the HF for the same values
of Ud and ∆.

Fig. 28 shows the total magnetization M as a function of the electron filling n. When n decreases,
M continuously becomes zero at a critical value of n for high temperatures (see for T = 0.025), while it
discontinuously becomes zero for low temperatures (see for T = 0.01). The similar properties are also
observed within the HF approximation as shown in Fig. 28. At low temperatures, however, the HF
approximation also predicts a metastable state where M decreases with increasing n and continuously
becomes zero at a critical n (see for T = 0.025). By calculating the thermodynamic potential, we find
that the phase separation of the ferromagnetic state and the paramagnetic state occurs at the low
temperatures (see Fig. 29).

Fig. 29 shows the transition temperature for the ferromagnetism Tc as a function of n for several
values of Ud(= 2∆)[72]. Tc monotonically decreases with decreasing n. The closed circles show
the second-order phase transition, while the open circles show the discontinuous transition as seen
in Fig. 28. Within the HF approximation, the second-order phase transition occurs at the high
temperature (solid line), while the phase separation occurs at the low temperature (area between the
dotted lines). In the DMFT, it is difficult to calculate the thermodynamic potential directly from
the local Green’s function. But we may expect that, within the DMFT, the similar phase separation
takes place at low temperatures where the magnetization shows a discontinuous transition as shown
in Fig. 28.

5.4 Superconductivity
Finally, we discuss the superconductivity in the d-p model (26). In infinite dimensions, the on-site

paring susceptibility χ of this model is given by[55, 67]

χ =
1
N

∫ β

0

dτ
∑

ij

< Tdi↑(τ)di↓(τ)d†j↓(0)d†j↑(0) >

= T
∑

ν,ν′
[α−1/2{I − Λ}−1 · Λ · α−1/2]ν,ν′ , (35)
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Figure 28: The total magnetization M as a
function of the electron number n, obtained
from the DMFT-ED method for Ud = 8 and
∆ = 4 at T = 0.01 (closed circles), 0.025
(open circles), and from the HF approxima-
tion for Ud = 2 and ∆ = 1 at T = 0.025
(dotted line), 0.1 (dashed line).
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with

Λν,ν′ = t4pd|P (iν)|[χ̃loc]ν,ν′ |P (iν′)|, (36)

αν,ν′ = t4pd|P (iν)|2δν,ν′ , (37)

where, χ̃loc is the local paring susceptibility at a d-site given by

[χ̃loc]ν,ν′ = T 2

∫ β

0

dτ1

∫ β

0

dτ2

∫ β

0

dτ3

∫ β

0

dτ4e
iν(τ1−τ2)eiν′(τ3−τ4) < Td↑(τ1)d↓(τ2)d

†
↓(τ3)d

†
↑(τ4) > . (38)

To calculate χ̃loc within the DMFT-ED method, we use a spectral representation of r.h.s. in eq.(38)
by inserting a complete set of eigenstates |i〉.

When the largest eigen value of Λ, λmax, approaches unity, the paring susceptibility diverges. It
signals the transition into the superconducting state from the normal state. In Fig.30, we show the
value of λmax as a function of the temperature T for Ud = 8 and ∆ = 4 at n = 1.3 and 1.7 obtained
from the DMFT-ED with the system size Ns = 5. The value of λmax increases with decreasing T
and exceeds unity at a certain critical temperature. For n = 1.3, the critical temperature for the
spin-singlet pairing, TSS , is higher than that for the spin-triplet pairing, TTS , while, for n = 1.7, TTS

is higher than TSS [76]. This tendency is consistent with the zero-temperature DMFT-ED result with
the system size Ns = 6− 8[58].

We note that the triplet superconductivity is on-site pairing and the gap function is odd in the Mat-
subara frequency as first proposed by Berezinskii in the superfluid 3He[77]. In the present calculation,
the eigen function corresponding to the largest eigen value of Λ for the triplet-pairing, is proportional
to the gap function at the critical temperature, and is confirmed to be odd in the Matsubara frequency.

In Fig.31, the superconducting transition temperature for the triplet pairing TTS and that for the
singlet pairing TSS , obtained from the DMFT-ED method mentioned above, are plotted as functions
of n for Ud = 8 and ∆ = 4. We also plotted the transition temperature for the ferromagnetism
Tc (see Fig. 29) together with that for the antiferromagnetism TN calculated from the DMFT-ED
method with Ns = 6. As seen in Fig.31, the singlet superconductivity is realized for n <∼ 1.4 near
the antiferromagnetic phase, where the antiferromagnetic fluctuation is considered to be responsible
for the singlet pairing. On the other hand, the triplet superconductivity is realized for T >∼ 1.4 near
the ferromagnetic phase, where the ferromagnetic fluctuation is considered to be responsible for the
triplet pairing. Significantly, a reentrant superconducting transition is observed for 1.4 <∼ n <∼ 1.5. The
reentrant transition has also been observed in the d = ∞ periodic Anderson model[78]. Therefore, the
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Figure 30: The largest eigen value λmax as
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and ∆ = 4 at n = 1.3 and 1.7 obtained from
the DMFT-ED with Ns = 5.
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reentrant superconducting transition is considered to be a specific feature of two-band type models
including d-p model and the periodic Anderson model.

6 Summary and Discussion
We have investigate the ferromagnetism and the related superconductivity of the Hubbard model

with two-fold orbital degeneracy and the d-p model with paying attention to the effect of the interplay
between the Coulomb interactions and the band splitting. To obtain reliable results beyond the
perturbative or the mean-field like approximations, we use the numerical diagonalization method for
the one-dimensional models and the dynamical mean-field theory for the infinite-dimensional model.
For one-dimensional models, we calculate the critical exponent Kρ based on the Luttinger liquid
theory and the paring correlation functions of the ground state.

In the one-dimensional multi-orbital Hubbard model, we have obtained various phase diagrams
including the ferromagnetic and the superconducting state on the U ′ − J parameter plane. The
fully polarized ferromagnetism has been found in the strong coupling regime with U ′ >∼ J >∼ ∆. For
1 < n < 2, the ferromagnetism is metallic and mainly caused by the double-exchange mechanism[23].
Crystal-field splitting destroys the fully polarized ferromagnetism resulting in a partially polarized
one for J <∼ ∆. In the vicinity of the partially polarized ferromagnetism, we have found the triplet
superconducting phase, when J exceeds the lowest energy of the inter-band excitation. It extends to
the realistic parameter region for 3d transition-metals with U ′ > J .

Sakamoto et al.[23] claimed that the metallic ferromagnetism for ∆ = 0 appears in a similar pa-
rameter region in any dimension by comparing the results from one dimension with those from infinite
dimensions. It is natural to think that this ferromagnetism will appear in two and three dimensions
even in the presence of ∆. Then, we expect that a partially polarized (weak) ferromagnetism ap-
pears in real materials, in which Hund’s rule coupling and crystal-field splitting compete with each
other, such as in cobalt oxides. In fact, a weak ferromagnetism has been observed in the layered
Na0.75CoO2[13] as well as in the perovskite R1−xAxCoO3[79]. The orbital degeneracy of 3d electrons
is considered to play a crucial role in NaxCoO2 as well as in La1−xSrxCoO3[15].

In our calculation, we can not find any sign of the superconductivity near the fully polarized
ferromagnetic state at the realistic parameter region U ′ > J . It suggests that not the complete
ferromagnetic state but the weak ferromagnetic state can be a key to the superconductivity of real
materials. The competition between Hund’s rule coupling and crystal-field splitting causes the large
orbital fluctuation, accompanied by the fluctuation between the low-spin and the high-spin states at
each Co ion. This fluctuation is expected to mediate the superconductivity near the weak ferromag-
netism. Since the orbital fluctuation has a local character, the mechanism for the superconductivity
could be common in all dimensions. We therefore think that exploration of the superconductivity in
the vicinity of the weak ferromagnetism in the perovskite R1−xAxCoO3[79] may be promising.

In the one-dimensional d-p model, we have calculated the critical exponent Kρ and the various
types of the paring correlation functions. Using the Luttinger liquid relations, we have found that the
SC correlation is dominant in the parameter region where the renormalized band becomes almost flat.
Since the narrowing of the effective bandwidth leads to the enhancement of the fluctuation, it can cause
the superconductivity. The behavior of the paring correlation functions suggests that the singlet paring
on a same p site and between the nearest neighbor p sites are most relevant to the superconducting
state near half-filling. This result can be interpreted that the antiferromagnetic fluctuation meditates
the singlet paring as similar as the t-J model. However, in large doping case n = 12/7, the triplet
paring between the nearest neighbor p sites becomes relevant to the superconductivity as well as the
singlet paring between the nearest neighbor p sites. This result suggests that the low energy physics
of the d-p model can not well described by the t-J model near n = 2. We think that the existence of
multi-band might be crucial to understand the triplet paring superconductivity.

We also examine infinite-dimensional d-p model based on the dynamical mean-field theory. The
dynamical mean-field theory becomes exact in the limit of infinite spatial dimensions and believed to
be a good approximation in high dimensions. The result is expected to be complementary to the result
of the one-dimensional d-p model. We obtain the phase diagrams of the metal-insulator transition on
the ground state at half-filling and quarter-filling. We also calculate the magnetization and the pairing
susceptibility to obtain the transition temperatures for the ferromagnetism and the superconductivity.
It shows that the singlet superconductivity is realized for n <∼ 1.4 near the antiferromagnetic phase,
where the antiferromagnetic fluctuation is considered to be responsible for the singlet pairing. On
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the other hand, the triplet superconductivity is realized for T >∼ 1.4 near the ferromagnetic phase.
We think that the ferromagnetic fluctuation is responsible for the triplet pairing as well as the one-
dimensional case near n = 2.

Ferromagnetism and superconductivity has been studied for a long time as a central argument in
itinerant electron systems. In this paper, we have presented the electron correlation and the band
splitting to be crucial for the ferromagnetism and the related superconductivity in the two types of the
two-band Hubbard models. We hope that our work would yield an insight into the deep relationship
between these interesting phenomena.
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